These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Author: Lavertu M, Méthot S, Tran-Khanh N, Buschmann MD. Journal: Biomaterials; 2006 Sep; 27(27):4815-24. PubMed ID: 16725196. Abstract: Chitosan is a biodegradable natural polysaccharide that has shown potential for gene delivery, although the ideal molecular weight (MW) and degree of deacetylation (DDA) for this application have not been elucidated. To examine the influence of these parameters on gene transfer, we produced chitosans with different DDAs (98%, 92%, 80% and 72%) and depolymerized them with nitrous acid to obtain different MWs (150, 80, 40 and 10 kDa). We produced 64 formulations of chitosan/pDNA complexes (16 chitosans, 2 amine-to-phosphate (N:P) ratios of 5:1 and 10:1 and 2 transfection media pH of 6.5 and 7.1), characterized them for size and surface charge, and tested them for gene transfection in HEK 293 cells in vitro. Several formulations produced high levels of transgene expression while two conditions, 92-10-5 and 80-10-10 [DDA-MW-N:P ratio] at pH 6.5, showed equivalence to our best positive control. The results also revealed an important coupling between DDA and MW of chitosan in determining transgene expression. Maximum expression was obtained with a certain combination of DDA and MW that depended on N:P ratio and the pH, but similar expression levels could be achieved by simultaneously lowering MW and increasing DDA or lowering DDA and increasing MW, suggesting a predominant role of particle stability, through co-operative electrostatic binding, in determining transfection efficiency.[Abstract] [Full Text] [Related] [New Search]