These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Immunoelectrophoretic characterizations of the cross-linking of fibrinogen and fibrin by factor XIIIa and tissue transglutaminase. Identification of a rapid mode of hybrid alpha-/gamma-chain cross-linking that is promoted by the gamma-chain cross-linking.
    Author: Shainoff JR, Urbanic DA, DiBello PM.
    Journal: J Biol Chem; 1991 Apr 05; 266(10):6429-37. PubMed ID: 1672529.
    Abstract:
    Cross-linking of human fibrin by fibrin stabilizing factor (factor XIIIa) and tissue transglutaminase (ti-TG) was examined by immunoprobing electrophoregrams for positive identification of the cross-linked chains. The immunoprobing was carried out by a new, direct staining technique employing composite gels of a porous protein immobilizing matrix (glyoxyl agarose) blended with a removable polyacrylamide filler that eliminates need for Western blotting. We find that the known rapid cross-linking of gamma-chains into gamma 2-dyads by XIIIa is accompanied by co-cross-linking of the gamma 2-dyads with alpha-chains to form hybrid alpha gamma 2-triads. Little or no cross-linking of relatively abundant alpha- and gamma-chain monads into hybrid alpha gamma-dydads accompanies formation of the alpha gamma 2-triads. Thus, formation of the gamma 2-dyads accelerates the hybrid cross-linking. This acceleration is viewed as demonstrating a previously unknown mode of cooperative interaction between alpha- and gamma-chains arising from cross-linking of the D-domains of the molecules. This strengthened interaction is not critically dependent on fibrinopeptide-release, because alpha gamma 2-triads are similarly formed when fibrinogen is cross-linked by XIIIa. Also observed in the study with XIIIa was the formation of small amounts of homologous gamma 3 and gamma 4 oligomers which had been predicted by others to contribute to branching of fibrin strands. Unlike XIIIa, ti-TG acts preferentially on alpha-chains rather than gamma-chains as known. As alpha gamma-dyad, not seen in reactions with XIIIa, is produced concurrent with the homologous alpha-chain cross-linking. Also, three different species of alpha 2-dyads were produced by ti-TG, two of which were not seen in reactions with XIIIa. The differences in product formation revealed by the specific staining are viewed as providing criteria for distinguishing products of XIIIa and ti-TG in biologic specimens.
    [Abstract] [Full Text] [Related] [New Search]