These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antioxidant effect of zinc and zinc-metallothionein in the acute cytotoxicity of hydrogen peroxide in Ehrlich ascites tumour cells. Author: Suntres ZE, Lui EMK. Journal: Chem Biol Interact; 2006 Jul 25; 162(1):11-23. PubMed ID: 16730687. Abstract: This study was concerned with the role of zinc (Zn) and zinc-metallothionein (Zn-MT) in oxidative stress. Hydrogen peroxide-induced oxidative injury was examined in Ehrlich ascites tumour cells isolated from control host mice, mice pretreated with 10 mg/kg ZnSO4 (i.p.) to increase cellular Zn/Zn-MT levels, and mice exposed to Zn-deficient diet to reduce the cellular Zn/Zn-MT levels. The results of the present study showed that Ehrlich cells with seven-fold differences in Zn-MT concentrations could be obtained by manipulating the Zn status of host mice and that high Zn and Zn-MT levels can make Ehrlich cells more resistant to H2O2-induced oxidative injury (cell viability, lipid peroxidation, [Ca2+]i) while cells with reduced Zn/Zn-MT levels were more susceptible to this treatment. H2O2 treatment resulted in oxidation of MT thiolate groups and loss of its metal binding capacity with translocation of Zn released from oxidized MT to other cellular sites. Preincubation of Ehrlich cells with ZnSO4 in vitro also conferred some degree of resistance to H2O2 toxicity, suggesting the inherent antioxidative property of Zn ions. These data suggested that Zn-MT can be considered as an antioxidant by virtue of its thiolate groups and its Zn ions that are released in the presence of oxidative stress.[Abstract] [Full Text] [Related] [New Search]