These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats.
    Author: Zhang C, Li Y, Chen J, Gao Q, Zacharek A, Kapke A, Chopp M.
    Journal: Neuroscience; 2006 Aug 25; 141(2):687-695. PubMed ID: 16730912.
    Abstract:
    Bone morphogenetic proteins play a key role in astrocytic differentiation. Astrocytes express the gap junctional protein connexin-43, which permits exchange of small molecules in brain and enhances synaptic efficacy. Bone marrow stromal cells produce soluble factors including bone morphogenetic protein 2 and bone morphogenetic protein 4 (bone morphogenetic protein 2/4) in ischemic brain. Here, we tested whether intra-carotid infusion of bone marrow stromal cells promotes synaptophysin expression and neurological functional recovery after stroke in rats. Adult male Wistar rats were subjected to 2 h of right middle cerebral artery occlusion. Rats were treated with or without bone marrow stromal cells at 24 h after middle cerebral artery occlusion via intra-arterial injection (n=8/group). A battery of functional tests was performed. Immunostaining of 5-bromo-2-deoxyuridine, Ki67, bone morphogenetic protein 2/4, connexin-43, synaptophysin, glial fibrillary acidic protein, neuronal nuclear antigen, and double staining of 5-bromo-2-deoxyuridine/glial fibrillary acidic protein, 5-bromo-2-deoxyuridine/neuronal nuclear antigen, glial fibrillary acidic protein/bone morphogenetic protein 2/4 and glial fibrillary acidic protein/connexin-43 were employed. Rats treated with bone marrow stromal cells significantly (P<0.05) improved functional recovery compared with the controls. 5-Bromo-2-deoxyuridine and Ki67 positive cells in the ipsilateral subventricular zone were significantly (P<0.05) increased in bone marrow stromal cell treatment group compared with the controls, respectively. Administration of bone marrow stromal cells significantly (P<0.05) promoted the proliferating cell astrocytic differentiation, and increased bone morphogenetic protein 2/4, connexin-43 and synaptophysin expression in the ischemic boundary zone compared with the controls, respectively. Bone morphogenetic protein 2/4 expression correlated with the expression of connexin-43 (r=0.84, P<0.05) and connexin-43 expression correlated with the expression of synaptophysin (r=0.73, P<0.05) in the ischemic boundary zone, respectively. Administration of bone marrow stromal cells via an intra-carotid route increases endogenous brain bone morphogenetic protein 2/4 and connexin-43 expression in astrocytes and promotes synaptophysin expression, which may benefit functional recovery after stroke in rats.
    [Abstract] [Full Text] [Related] [New Search]