These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuronal networks and synaptic plasticity: understanding complex system dynamics by interfacing neurons with silicon technologies.
    Author: Colicos MA, Syed NI.
    Journal: J Exp Biol; 2006 Jun; 209(Pt 12):2312-9. PubMed ID: 16731807.
    Abstract:
    Information processing in the central nervous system is primarily mediated through synaptic connections between neurons. This connectivity in turn defines how large ensembles of neurons may coordinate network output to execute complex sensory and motor functions including learning and memory. The synaptic connectivity between any given pair of neurons is not hard-wired; rather it exhibits a high degree of plasticity, which in turn forms the basis for learning and memory. While there has been extensive research to define the cellular and molecular basis of synaptic plasticity, at the level of either pairs of neurons or smaller networks, analysis of larger neuronal ensembles has proved technically challenging. The ability to monitor the activities of larger neuronal networks simultaneously and non-invasively is a necessary prerequisite to understanding how neuronal networks function at the systems level. Here we describe recent breakthroughs in the area of various bionic hybrids whereby neuronal networks have been successfully interfaced with silicon devices to monitor the output of synaptically connected neurons. These technologies hold tremendous potential for future research not only in the area of synaptic plasticity but also for the development of strategies that will enable implantation of electronic devices in live animals during various memory tasks.
    [Abstract] [Full Text] [Related] [New Search]