These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Freeze-dried rehydrated human blood platelets regulate intracellular pH. Author: Tang M, Wolkers WF, Crowe JH, Tablin F. Journal: Transfusion; 2006 Jun; 46(6):1029-37. PubMed ID: 16734821. Abstract: BACKGROUND: Long-term storage of platelets (PLTs) in the dry state would greatly improve options for PLT storage. Whether trehalose-loaded freeze-dried and rehydrated PLTs could regulate intracellular pH (pHi) was evaluated. STUDY DESIGN AND METHODS: Previously it was shown that human PLTs can be successfully preserved by freeze-drying with trehalose. Trehalose-loaded freeze-dried rehydrated PLTs and fresh control PLTs were labeled with the pH dye BCECF-AM. pHi was measured in resting cells, cells acidified with nigericin, and cells treated with thrombin. The sodium-proton pump was blocked by treatment with 5-(N-methyl-N-isobutyl)amiloride (MIA). RESULTS: The pHi of rehydrated PLTs is the same as that of fresh control PLTs, 7.27+/-0.03 (SD; n=5) and 7.27+/-0.02 (n=5), respectively. Nigericin treatment of cells showed that the recovery in pHi was Na+-dependent and followed Michaelis-Menten kinetics. The Vmax values (DeltapH/9 sec) were 0.21+/-0.039 (n=3) and 0.22+/-0.025 (n=3) for rehydrated and control PLTs, respectively. The exchange constants were 17.7+/-2.3 mmol per L (n=3) and 17.0+/-1.9 mmol per L (n=3) for rehydrated and control PLTs, respectively. Treatment of cells with MIA showed that NHE1 remained sensitive to the inhibitor after freeze-drying and rehydration. CONCLUSION: The results show that the pHi regulation system is largely preserved during freeze-drying and rehydration of PLTs.[Abstract] [Full Text] [Related] [New Search]