These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Embryogenesis of the serotonergic system in the earthworm Eisenia fetida (Annelida, Oligochaeta): immunohistochemical and biochemical studies. Author: Koza A, Wilhelm M, Hiripi L, Elekes K, Csoknya M. Journal: J Comp Neurol; 2006 Jul 20; 497(3):451-67. PubMed ID: 16736470. Abstract: Organization of the serotonergic system and changes of the serotonin (5-HT) content were studied during the embryogenesis of the earthworm Eisenia fetida, using immunocytochemistry and HPLC. A gradual emergence of 5-HT immunoreactive (IR) cells and their axon projections in the several ganglia of the central (CNS) and peripheral nervous system are described in the context of a staged time-scale of development. The first 5-HT-IR neurons appear in the subesophageal ganglion at an early embryonic stage (E2), followed by neurons in some rostrally located ventral ganglia. In the cerebral ganglion, 5-HT-IR cells can be detected only from stage E5. The number of labeled cells in each ganglion of the embryo increases until hatching, when it is still considerably lower than that observed in adults. This shows that the development of the 5-HTergic system is far from complete by the end of embryogenesis. Organization of 5-HT-IR innervation of the body wall starts by stages E3 to E4. In the stomatogastric nervous system the first 5-HT-IR fibers can be detected by stage E5. By stage E9 5-HT immunopositive neurons can be observed in both the stomatogastric ganglia and the enteric plexus. Both 5-HT levels and the numbers of the labeled cells show a significant increase before hatching, which indicate a functional maturation of the 5-HTergic system. Based on the early appearance of 5-HT, we suppose that it may play a regulatory role in both the gangliogenesis and the maturation of peripheral functions necessary during postembryonic life.[Abstract] [Full Text] [Related] [New Search]