These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Analysis of the interaction between nicotinic acetylcholine receptor and Na+,K(+)-ATPase in the rat skeletal muscle and the Torpedo electric organ membrane preparation].
    Author: Krivoĭ II, Drabkina TM, Vasil'ev AN, Kravtsova VV, Mandel F.
    Journal: Ross Fiziol Zh Im I M Sechenova; 2006 Feb; 92(2):191-203. PubMed ID: 16739652.
    Abstract:
    The interaction between the nicotinic acetylcholine receptor and Na+,K(+)-ATPase described previously was further studied in isolated rat diaphragm and in a membrane preparation of Torpedo californica electric organ. Three specific agonists of the nicotinic receptor: acetylcholine, nicotine and carbamylcholine (100 nmol/L each), all hyperpolarized the non-synaptic membranes of muscle fibers by up to 4 mV. Competitive antagonists of nicotinic acetylcholine receptor, d-tubocurarine (2 mcmol/L) or alpha-bungarotoxin (5 nmol/L) completely blocked the acetylcholine-induced hyperpolarization indicating that the effect requires binding of the agonists to their specific sites. The noncompetitive antagonist, proadifen (5 mcmol/L), exerted no effect on the amplitude of hyperpolarized but decreased K0.5 for this effect from 28.3 +/- 3.6 nmol/L to 7.1 +/- 2.3 nmol/L. Involvement of the Na+,K(+)-ATPase was suggested by data demonstrating that three specific Na+,K(+)-ATPase inhibitors: ouabain, digoxin or marinobufagenin (100 nmol/L each), all inhibit the hyperpolarizing effect of acetylcholine. Acetylcholine did not affectation either the catalytic activity of the Na+,K(+)-ATPase purified from sheep kidney or the transport activity of the Na+,K(+)-ATPase in the rat erythrocytes, i. e. in preparations not containing acetylcholine receptors. Hence, acetylcholine does not directly affect the Na+,K(+)-ATPase. In a Torpedo membrane preparation, ouabain (< or = 100 nmol/L) increased the binding of the fluorescent ligand: Dansyl-C6-choline (DCC). No ouabain effect was observed either when the agonist binding sites of the receptor were occupied by 2 mmol/L carbamylcholine, or in the absence Mg2+, when the binding of ouabain to the Na+,K(+)-ATPase is negligible. These results indicate that ouabain only affects specific DCC binding and only when bound to the Na+,K(+)-ATPase. The data obtained suggest that, in two different systems, the interaction between the nicotinic acetylcholine receptor and the Na+,K(+)-ATPase specifically involve the ligand binding sites of these two proteins.
    [Abstract] [Full Text] [Related] [New Search]