These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. Author: Britigan N, Alshawa A, Nizkorodov SA. Journal: J Air Waste Manag Assoc; 2006 May; 56(5):601-10. PubMed ID: 16739796. Abstract: Indoor air purifiers are advertised as safe household products for health-conscious individuals, especially for those suffering from allergies and asthma. However, certain air purifiers produce ozone (O3) during operation, either intentionally or as a byproduct of air ionization. This is a serious concern, because O3 is a criteria air pollutant regulated by health-related federal and state standards. Several types of air purifiers were tested for their ability to produce ozone in various indoor environments at 40-50% relative humidity, including office rooms, bathrooms, bedrooms, and cars. O3 levels generated by personal wearable air purifiers were also tested. In many cases, O3 concentrations were well in excess of public and/or industrial safety levels established by U.S. Environmental Protection Agency, California Air Resources Board, and Occupational Safety and Health Administration. Simple kinetic equations were obtained that can predict the steady-state level of O3 in a room from the O3 emission rate of the air purifier and the first-order decay rate of O3 in the room. The additivity of O3 levels generated by independent O3 generators was experimentally demonstrated.[Abstract] [Full Text] [Related] [New Search]