These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia-inducible factor-1 activation, during skin carcinogenesis.
    Author: Martin-Oliva D, Aguilar-Quesada R, O'valle F, Muñoz-Gámez JA, Martínez-Romero R, García Del Moral R, Ruiz de Almodóvar JM, Villuendas R, Piris MA, Oliver FJ.
    Journal: Cancer Res; 2006 Jun 01; 66(11):5744-56. PubMed ID: 16740713.
    Abstract:
    Poly(ADP-ribose) polymerase (PARP)-1, an enzyme that catalyzes the attachment of ADP ribose to target proteins, acts as a component of enhancer/promoter regulatory complexes. In the present study, we show that pharmacologic inhibition of PARP-1 with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) results in a strong delay in tumor formation and in a dramatic reduction in tumor size and multiplicity during 7,12-dimethylbenz(a)anthracene plus 12-O-tetradecanoylphorbol-13-acetate-induced skin carcinogenesis. This observation was parallel with a reduction in the skin inflammatory infiltrate in DPQ-treated mice and tumor vasculogenesis. Inhibition of PARP also affected activator protein-1 (AP-1) activation but not nuclear factor-kappaB (NF-kappaB). Using cDNA expression array analysis, a substantial difference in key tumor-related gene expression was found between chemically induced mice treated or not with PARP inhibitor and also between wild-type and parp-1 knockout mice. Most important differences were found in gene expression for Nfkbiz, S100a9, Hif-1alpha, and other genes involved in carcinogenesis and inflammation. These results were corroborated by real-time PCR. Moreover, the transcriptional activity of hypoxia-inducible factor-1alpha (HIF-1alpha) was compromised by PARP inhibition or in PARP-1-deficient cells, as measured by gene reporter assays and the expression of key target genes for HIF-1alpha. Tumor vasculature was also strongly inhibited in PARP-1-deficient mice and by DPQ. In summary, this study shows that inhibition of PARP on itself is able to control tumor growth, and PARP inhibition or genetic deletion of PARP-1 prevents from tumor promotion through their ability to cooperate with the activation AP-1, NF-kappaB, and HIF-1alpha.
    [Abstract] [Full Text] [Related] [New Search]