These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Time course alterations of myocardial endothelin-1 production during the formation of exercise training-induced cardiac hypertrophy. Author: Iemitsu M, Maeda S, Otsuki T, Goto K, Miyauchi T. Journal: Exp Biol Med (Maywood); 2006 Jun; 231(6):871-5. PubMed ID: 16741015. Abstract: Endothelin (ET)-1 is produced by endothelial cells and cardiac myocytes. ET-1 has positive inotropic and chronotropic effects on the heart and causes myocardial cell hypertrophy. Exercise training induces a physiologic cardiac hypertrophy. To study whether myocardial ET-1 is involved in the formation of exercise training-induced cardiac hypertrophy, we investigated time-course alterations of myocardial ET-1 gene expression and ET-1 peptide level in the heart of rats during a formative process of exercise training-induced cardiac hypertrophy. We used the hearts of rats that had been exercise-trained for 4 weeks (4WT) or 8 weeks (8WT) and sedentary control rats for 4 weeks (4WC) or 8 weeks (8WC). Exercise-trained rats performed treadmill running for 5 days/week (60 mins/day). Left ventricular mass index and wall thickness and stroke volume index, measured using echocardiography, in the 8WT group were significantly greater than in the 8WC group, although there were no differences between the 4WC and 4WT groups in these parameters. These results indicated that the 8WT rats developed physiologic cardiac hypertrophy, whereas the 4WT rats did not yet have cardiac hypertrophy. Myocardial ET-1 gene expression and tissue ET-1 concentration in the heart were significantly higher in the 8WT group than in the 8WC group, whereas these values did not differ between the 4WC and 4WT groups. The present study suggests that an alternation of myocardial ET-1 production corresponds with the formation of exercise training-induced cardiac hypertrophy. Therefore, the exercise training-induced change in myocardial ET-1 production may participate in a mechanism of exercise training-induced cardiac adaptation (e.g., cardiac hypertrophy).[Abstract] [Full Text] [Related] [New Search]