These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrophysiological measurements in three-dimensional in vivo-mimetic organotypic cell cultures: preliminary studies with hen embryo brain spheroids. Author: Uroukov IS, Ma M, Bull L, Purcell WM. Journal: Neurosci Lett; 2006 Aug 14; 404(1-2):33-8. PubMed ID: 16750879. Abstract: Using three-dimensional artificial tissue constructs shown to offer organotypic functionality, hen embryo brain spheroids were used as a novel electrophysiological paradigm. For the first time, single spontaneous action potentials were recorded from spheroids in culture at day 7 in vitro (DIV) using multi-electrode arrays. At DIV14 'bursting behaviour' was observed. Simple stimulation was found to induce an increase in spiking frequency with an effect that ramped up over DIV7-14. By DIV14, the frequency under stimulation was typically over twice that of the corresponding spontaneous spiking. These results indicate strong self-organizing processes in vitro within the neuronal networks of the three-dimensional spheroid cell cultures. The organotypic in vivo-mimetic nature of the spheroid paradigm was confirmed by electron microscopy that revealed an outer layer of glial cells, a glial limitans, while immunostaining for Neurofilament and Glial Fibrilliary Acidic Protein demonstrated neuronal cells with a centralized neuronal and synaptic distribution. Basic biochemical functionality was also determined and Acetylcholinesterase measured, indicating the activity of acetylcholine receptors. Thus the organotypic hen embryo brain spheroid model may offer a new paradigm in which to explore neuronal networks.[Abstract] [Full Text] [Related] [New Search]