These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of staging, mean cell residence time, and thermophilic temperature on the thermophilic anaerobic digestion process. Author: Gray DM, Hake JM, Ghosh S. Journal: Water Environ Res; 2006 May; 78(5):497-509. PubMed ID: 16752611. Abstract: As Class B biosolids land application has become less acceptable to many local jurisdictions, low-cost processes to achieve Class A standards have become more popular. Prominent among these low-cost processes is thermophilic anaerobic digestion. As a result, thermophilic anaerobic digestion is now a popular topic in wastewater treatment literature, but quantifiable methods for selecting a particular thermophilic process have not been offered. To provide for this need, an empirical model was developed from data collected in thermophilic anaerobic digestion studies conducted using East Bay Municipal Utility District's (Oakland, California) primary and waste activated sludge to feed both bench- and full-scale digesters. The model predicts at which thermophilic temperature and mean cell residence time (MCRT) one process will outperform or equal another, with respect to fecal coliform reduction. The different disinfection efficiencies in the different thermophilic processes might be explained by the presence or absence of high volatile acid and/or un-ionized ammonia levels in the processes' digested sludges. Data from these studies also show an apparent relationship between increased thermophilic temperatures and volatile solids destruction, and between increased temperatures and specific volatile acids production, for digesters operating at a 13-day MCRT and higher, but not for digesters operating at a 2-day MCRT.[Abstract] [Full Text] [Related] [New Search]