These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The second generation of BCR-ABL tyrosine kinase inhibitors. Author: Tauchi T, Ohyashiki K. Journal: Int J Hematol; 2006 May; 83(4):294-300. PubMed ID: 16757427. Abstract: Imatinib was developed as the first molecularly targeted therapy to specifically inhibit the BCR-ABL kinase in Philadelphia chromosome (Ph)-positive chronic myeloid leukemia (CML). Because of the excellent hematologic and cytogenetic responses, imatinib has moved toward first-line treatment for newly diagnosed CML. However, the emergence of resistance to imatinib remains a major problem in the treatment of Ph-positive leukemia. Several mechanisms of imatinib resistance have been identified, including BCR-ABL gene amplification that leads to overexpression of the BCR-ABL protein, point mutations in the BCR-ABL kinase domain that interfere with imatinib binding, and point mutations outside of the kinase domain that allosterically inhibit imatinib binding to BCR-ABL. The need for alternative or additional treatment for imatinib-resistant BCR-ABL-positive leukemia has guided the way to the design of a second generation of targeted therapies, which has resulted mainly in the development of novel small-molecule inhibitors such as AMN107, dasatinib, NS-187, and ON012380. The major goal of these efforts is to create new compounds that are more potent than imatinib and/or more effective against imatinib-resistant BCR-ABL clones. In this review, we discuss the next generation of BCR-ABL kinase inhibitors for overcoming imatinib resistance.[Abstract] [Full Text] [Related] [New Search]