These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential regulation of ARE-mediated TNFalpha and IL-1beta mRNA stability by lipopolysaccharide in RAW264.7 cells.
    Author: Chen YL, Huang YL, Lin NY, Chen HC, Chiu WC, Chang CJ.
    Journal: Biochem Biophys Res Commun; 2006 Jul 21; 346(1):160-8. PubMed ID: 16759646.
    Abstract:
    Messenger RNA degradation is a mechanism by which eukaryotic cells regulate gene expression and influence cell growth and differentiation. Many protooncogene, cytokine, and growth factor RNAs contain AU-rich element (AREs) in the 3'untranslated regions which enable them to be targeted for rapid degradation. To investigate the mechanism of ARE-mediated RNA stability, we demonstrate the expression and regulation of TNFalpha and IL-1beta mRNAs in LPS-stimulated macrophages. TNFalpha mRNA was rapidly induced by LPS and showed short half-life at 2-h induction, whereas IL-1beta mRNA was induced slowly and had longer half-life. Electrophoretic mobility shift assays showed that the LPS-induced destabilization factor tristetraprolin (TTP) could bind to TNFalpha ARE with higher affinity than to IL-1beta ARE. HuR was identified to interact with TNFalpha ARE to exert RNA stabilization activity. The expression and phosphorylation of TTP could be activated by p38 MAPK pathway during LPS stimulation. Moreover, ectopic expression with TTP and kinases in p38 pathway followed by biochemical assays showed that the activation of p38 pathway resulted in the phosphorylation of TTP and a decrease in its RNA-binding activity. The ARE-containing reporter assay presented that the p38 signal could reverse the inhibitory activity of TTP on IL-1beta ARE but not on TNFalpha ARE. The present results indicate that the heterogeneity of AREs from TNFalpha and IL-1beta could reflect distinct ARE-binding proteins to modulate their RNA expression.
    [Abstract] [Full Text] [Related] [New Search]