These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The interaction between alphaA- and alphaB-crystallin is sequence-specific. Author: Sreelakshmi Y, Sharma KK. Journal: Mol Vis; 2006 May 24; 12():581-7. PubMed ID: 16760894. Abstract: PURPOSE: We have previously shown that residue 42-57 (TSLSPFYLRPPSFLRA; recognition sequence 1 or RS-1) and residue 60-71 (WFDTGLSEMRLE; recognition sequence 2 or RS-2) in alphaB-crystallin play a role in oligomerization and subunit interaction with alphaA-crystallin. When we created multiple mutations in alphaB-crystallin in RS-1 and RS-2 at S53(T), F54(G), L55(G), W60(R), and F61(N), we found that these mutations destabilized the protein, and the protein precipitated. When the individual mutations were created at F54, W60, and F61 in alphaB-crystallin, protein stability was not affected, but the mutations had an effect on oligomerization and subunit interaction with alphaA-crystallin. To find out whether the sequence specificity of these residues is important for the overall function of alphaB-crystallin, we inverted the 54-60 sequence such that 54FLRAPSW60 became 54WSPARLF60 using site-directed mutagenesis. We studied the effect of inversion on oligomerization and subunit interaction with alphaA-crystallin. METHODS: Mutations were introduced using site-directed mutagenesis and the mutant protein, expressed in Escherichia coli BL21(DE3)pLysS cells, was purified by ion-exchange and gel filtration chromatography. The mutation was confirmed by mass spectrometry. The structure and hydrophobicity were analyzed by spectroscopic methods. The chaperone-like activities of wild-type and mutant proteins were compared using alcohol dehydrogenase and citrate synthase. Subunit exchange between alphaA- and alphaB-crystallin was monitored by fluorescence resonance energy transfer (FRET). For this purpose, purified alphaB- and alphaBinvert-crystallin were labeled with Alexa fluor 350 whereas Alexa fluor 488 was used to label alphaA-crystallin. RESULTS: The inversion of residues 54-60 led to homooligomers that were 38% smaller in size than their wild-type counterparts. The inversion also reduced the tryptophan fluorescence intensity by 50%, as compared to that of wild-type alphaB-crystallin. This suggests that Trp54 is less exposed than Trp60. Inversion of residues did not affect the total hydrophobicity in alphaB-crystallin. Secondary structural analysis revealed a slight increase in the alpha-helical content of alphaBinvert-crystallin protein as compared to wild-type alphaB-crystallin. Except for an increase in the ellipticity of the alphaBinvert-crystallin mutant, no change was observed in the tertiary structure, as compared with that of wild-type alphaB-crystallin. Chaperone-like function was similar in the alphaBinvert-crystallin mutant and wild-type alphaB-crystallin. The inversion of residues decreased the subunit exchange rate with alphaA-crystallin by two fold. CONCLUSIONS: This study establishes for the first time that proper orientation of residues contributing to RS-1 and RS-2 sites in alphaB-crystallin is important for homooligomerization and optimal subunit interaction with alphaA-crystallin.[Abstract] [Full Text] [Related] [New Search]