These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of electrical and chemical stimulation of nucleus raphe magnus on responses to renal nerve stimulation.
    Author: Knuepfer MM, Holt IL.
    Journal: Brain Res; 1991 Mar 15; 543(2):327-34. PubMed ID: 1676333.
    Abstract:
    Electrical stimulation of the nucleus raphe magnus (NRM) inhibits some somatic and visceral input at the spinal level. This study was designed to examine the effects of electrical and chemical stimulation of NRM on neuronal responses to afferent renal nerve (ARN) stimulation. In chloralose-anesthetized rats, electrical stimulation of ARN elicited predominantly excitatory responses in spinal gray neurons. In 10 neurons studied, electrical stimulation of the NRM elicited an inhibition of spontaneous activity of 8 neurons and inhibited evoked responses to ARN stimulation in 6 neurons. Microinjection of glutamate (5-10 nmol in 0.5-1 microliter) into the NRM elicited an inhibition of spontaneous activity in 9 neurons, a facilitation in 6 neurons and no response in 8 neurons receiving ARN input. Responses evoked by ARN stimulation were inhibited in 12 neurons, facilitated in 4 neurons and not affected in 8 neurons. We conclude that renal input can be modulated at the spinal level by activation of the NRM and adjacent tissue. Furthermore, the inhibition of spinal gray neuronal responses elicited by stimulation of the NRM appears to be due, at least in part, to activation of fibers of passage since non-selective electrical stimulation is more efficacious than selective chemical stimulation of neuronal soma and dendrites.
    [Abstract] [Full Text] [Related] [New Search]