These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular mapping of a recessive gene for resistance to stripe rust in barley. Author: Yan GP, Chen XM. Journal: Theor Appl Genet; 2006 Aug; 113(3):529-37. PubMed ID: 16763858. Abstract: Barley stripe rust, caused by Puccinia striiformis f. sp. hordei, is one of the most important barley (Hordeum vulgare) diseases in the United States. The disease is best controlled using resistant cultivars. Barley genotype Grannenlose Zweizeilige (GZ) has a recessive gene (rpsGZ) that is effective against all races of P. striiformis f. sp. hordei identified so far in the USA. To develop a molecular map for mapping the gene, F(8 )recombinant inbred lines (RILs) were developed from the Steptoe X GZ cross through single-seed descent. Seedlings of the parents and RILs were evaluated for resistance to races PSH-14 and PSH-54 of P. striiformis f. sp. hordei under controlled greenhouse conditions. Genomic DNA was extracted from the parents and 182 F(8 )RILs and used for linkage analysis. The resistance gene analog polymorphism (RGAP) technique was used to identify molecular markers for rpsGZ. A linkage group for the gene was constructed with 12 RGAP markers, of which two markers co-segregated with the resistance locus, and two markers were closely linked to the locus with a genetic distance of 0.9 and 2.0 cM, respectively. These four markers were present only in the susceptible parent. The closest marker to the resistance allele was 11.7 cM away. Analyses of two sets of barley chromosome addition lines of wheat with the two RGAP markers that were cosegregating with the susceptibility allele showed that rpsGZ and the markers were located on the long arm of barley chromosome 4H. Further, tests with four simple sequence repeat (SSR) markers confirmed the chromosomal location of the rpsGZ gene and also integrated the RGAP markers into the known SSR-based linkage map of barley. The closest SSR marker EBmac0679 had a genetic distance of 7.5 cM with the gene in the integrated linkage map constructed with the 12 RGAP markers and 4 SSR markers. The information on chromosomal location and molecular markers for rpsGZ should be useful for incorporating this gene into commercial cultivars and combining it with other resistance genes for durable resistance.[Abstract] [Full Text] [Related] [New Search]