These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Retinal pigment epithelial cell transplantation could provide trophic support in Parkinson's disease: results from an in vitro model system.
    Author: McKay BS, Goodman B, Falk T, Sherman SJ.
    Journal: Exp Neurol; 2006 Sep; 201(1):234-43. PubMed ID: 16764861.
    Abstract:
    Transplantation of retinal pigment epithelial (RPE) cells in the basal ganglia could provide a novel cell-based therapy for Parkinson's disease by providing a constant source of dopamine replacement via the melanin synthetic pathway enzyme tyrosinase. We now demonstrate that human RPE cells also produce a neurotrophic effect on primary cultures of rat striatal (enkephalinergic) and mesencephalic (dopaminergic) neurons. Differentiation of RPE cells to a pigmented monolayer using a Ca(++)-switch protocol increased the potency of the neurotrophic effect on dopaminergic neurons. Conditioned medium derived from differentiated RPE cells increased neurite outgrowth in dopaminergic neurons by 125% compared to 25% for undifferentiated RPE cells. The neurotrophic effect was not due to tyrosinase activity. Differentiation of RPE cells doubled the production of pigment-derived epithelial factor (PEDF). However, PEDF accounted for only a portion of the neurotrophic effect as determined by depletion experiments and dose-response comparisons with purified PEDF, indicating that differentiation increased the production of other trophic factors as well. Conditioned medium from differentiated RPE cells also provided a neurotrophic effect on a subset of enkephalinergic striatal neurons increasing neurite outgrowth by 78%. Survival of enkephalinergic neurons in vitro was increased by RPE conditioned medium. In untreated cultures the number of enkephalinergic neurons declined 62% over a 2-week period compared to a 29% decline in RPE-treated cultures. These results indicate that transplantation RPE cells could potentially provide a dual benefit in Parkinson's disease producing both dopamine and neurotrophic support of the basal ganglia.
    [Abstract] [Full Text] [Related] [New Search]