These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phase structure and enzymatic degradation of poly(L-lactide)/atactic poly(3-hydroxybutyrate) blends: an atomic force microscopy study.
    Author: Kikkawa Y, Suzuki T, Tsuge T, Kanesato M, Doi Y, Abe H.
    Journal: Biomacromolecules; 2006 Jun; 7(6):1921-8. PubMed ID: 16768415.
    Abstract:
    Phase structures and enzymatic degradation of poly(l-lactide) (PLLA)/atactic poly(3-hydroxybutyrate) (ata-PHB) blends with different compositions were characterized by using atomic force microscopy (AFM). Differential scanning calorimetry (DSC) thermograms of PLLA/ata-PHB blends with different compositions showed two glass transition temperatures, indicating that the PLLA/ata-PHB blends are immiscible in the melt. Surface morphologies of the thin films for PLLA/ata-PHB blends were determined by AFM. Phase separated morphology was recognized from the AFM topography and phase images. The domain size of the components was dependent on the blend ratio. Enzymatic degradation of the PLLA/ata-PHB blends was performed by using both PHB depolymerase and proteinase K. Either PLLA or ata-PHB domains were eroded depending on the kinds of enzyme. Surface morphologies after enzymatic degradation have revealed the phase structure along the depth direction. Enzymatic adsorption of PHB depolymerase was examined on the surface of PLLA/ata-PHB blends. The enzyme molecules were found on both domains of the binary blends. The larger number of enzyme molecules was found on the PLLA domains relative to those on the ata-PHB domains, suggesting the higher affinity of the enzyme against PLLA domain.
    [Abstract] [Full Text] [Related] [New Search]