These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Author: Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M. Journal: Biomacromolecules; 2006 Jun; 7(6):2044-51. PubMed ID: 16768432. Abstract: Novel "green" composites were successfully fabricated from recycled cellulose fibers (RCF) and a bacterial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by melt mixing technique. Various weight contents (15%, 30%, and 40%) of the fibers were incorporated in the PHBV matrix. The effect of the fiber weight contents on the thermal, mechanical, and dynamic-mechanical thermal properties of PHBV was investigated and a comparative property analysis was performed with RCF-reinforced polypropylene (PP) composites. The tensile and storage moduli of the PHBV-based composites were improved by 220% and 190%, respectively, by reinforcement with 40 wt % RCF. Halpin-Tsai and Tsai-Pagano's equations were applied for the theoretical modeling of the tensile modulus of PHBV-based composites. The heat deflection temperature (HDT) of the PHBV-based composites was increased from 105 to 131 degrees C, while the coefficient of linear thermal expansion (CLTE) value was reduced by 70% upon reinforcement with 40 wt % RCF. The PHBV-based composites had also shown better tensile and storage moduli and lower CLTE values than PP-based composites. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to study the melting behavior, thermal stability, and morphology of the composite systems, respectively.[Abstract] [Full Text] [Related] [New Search]