These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Consequences of verteporfin photodynamic therapy on choroidal neovascular membranes.
    Author: Tatar O, Kaiserling E, Adam A, Gelisken F, Shinoda K, Völker M, Lafaut BA, Bartz-Schmidt KU, Grisanti S.
    Journal: Arch Ophthalmol; 2006 Jun; 124(6):815-23. PubMed ID: 16769835.
    Abstract:
    OBJECTIVE: To examine the impact of photodynamic therapy (PDT) on angiogenesis in human choroidal neovascular membranes with respect to vascular endothelial growth factor (VEGF) expression, proliferation, and vascularization. METHODS: Retrospective review of an interventional case series of 50 patients (50 eyes) who underwent removal of choroidal neovascular membranes. Choroidal neovascularization was secondary to age-related macular degeneration. Twenty patients were treated with PDT 3 to 655 days before surgery. Choroidal neovascular membranes were stained for CD34, CD105, Ki-67, cytokeratin 18, and VEGF. Thirty choroidal neovascular membranes secondary to age-related macular degeneration without previous treatment were used as controls. RESULTS: Specimens without pretreatment disclosed varying degrees of vascularization, proliferative activity, and VEGF expression by different cells. Specimens treated with PDT 3 days earlier showed mostly occluded vessels, damaged endothelial cells, and low proliferative activity. In contrast, specimens excised at later time points after PDT were highly vascularized and proliferating. This chronology was associated with an impressive VEGF immunoreactivity unique to retinal pigment epithelial cells shortly after PDT that also shifted to other cells at later time points. CONCLUSIONS: Photodynamic therapy induces selective vascular damage in choroidal neovascular membranes. The effectiveness and selectivity of this treatment, however, seem to be jeopardized by a rebound effect initiated by enhanced VEGF expression in retinal pigment epithelial cells.
    [Abstract] [Full Text] [Related] [New Search]