These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. Author: Zhao Y, Patzer A, Herdegen T, Gohlke P, Culman J. Journal: FASEB J; 2006 Jun; 20(8):1162-75. PubMed ID: 16770015. Abstract: Up-regulation of cyclooxygenase (COX)-2 exacerbates neuronal injury after cerebral ischemia and contributes to neuronal cell death. The present study clarifies the function of cerebral peroxisome-proliferator-activated receptor(s) gamma (PPARgamma) in the expression of COX-2 in neurons of the rat brain after middle cerebral artery occlusion (MCAO) with reperfusion by immunohistochemistry, Western blot, and immunofluorescence staining. In peri-infarct cortical areas the PPARgamma was located in both microglia and neurons, whereas COX-2 was almost exclusively expressed in neurons. PPARgamma immunolabeling reached the peak 12 h after MCAO, whereas the number of COX-2 immunostained cells gradually rose and reached its peak at 48 h. Intracerebroventricular infusion of pioglitazone, an agonist of the PPARgamma, over a 5-day period before and 2 days after MCAO, reduced the infarct size, the expression of tumor necrosis factor alpha (TNF-alpha), COX-2, and the number of cells positively stained for COX-1 and COX-2 in the peri-infarct cortical regions. COX-2 induction was also attenuated in the ipsilateral but not in the contralateral hippocampus. In primary cortical neurons expressing the PPARgamma, pioglitazone suppressed COX-2 expression in response to oxidative stress. This protective effect was reversed after cotreatment with GW 9662, a selective antagonist of the PPARgamma, clearly demonstrating a PPARgamma-dependent mechanism. Our data provide evidence that activation of neuronal PPARgamma considerably contributes to neuroprotection by prevention of COX-2 up-regulation in vitro and in peri-infarct brain areas.[Abstract] [Full Text] [Related] [New Search]