These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Incubation temperature and hemoglobin dielectric of chicken embryos incubated under the influence of electric field.
    Author: Shafey TM, Al-Batshan HA, Shalaby MI, Ghannam MM.
    Journal: Electromagn Biol Med; 2006; 25(2):87-96. PubMed ID: 16771297.
    Abstract:
    Eggs from a layer-type breeder flock (Baladi, King Saud University) between 61 and 63 weeks of age were used in 3 trials to study the effects of electric field (EF) during incubation on the internal temperature of incubation, and eggs and hemoglobin (Hb) dielectric of chicken embryos at 18 days of age. Dielectric relative permittivity (epsilon') and conductivity (sigma) of Hb were examined in the range of frequency from 20 to 100 kHz. The values of dielectric increment (Deltaepsilon') and the relaxation times (tau) of Hb molecules were calculated. The internal temperature of eggs was measured in empty (following the removal of egg contents) and fertilized eggs in trials 1 and 2, respectively. The level of the EF was 30 kV/m, 60 Hz. EF incubation of embryos influenced the temperature of incubation and electrical properties of Hb molecules and did not influence the temperature of incubation and internal environment of eggs when empty eggs were incubated. EF incubation of fertilized eggs significantly raised the temperature of incubation, egg air cell, and at the surface of the egg yolk by approximately 0.09, 0.60, and 0.61 degrees F, respectively and Hb epsilon', sigma, Deltaepsilon', and tau as a function of the range of frequency of 20 to 100 kHz when compared with their counterparts of the control group. It was concluded that the exposure of fertilized chicken eggs to EF of 30 kV/m, 60 Hz, during incubation altered dielectric properties of Hb and that probably affected cell to cell communication and created the right environment for enhancing the growing process and heat production of embryos consequently increasing the temperature of the internal environment of the egg, and incubation.
    [Abstract] [Full Text] [Related] [New Search]