These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanistic analysis of reductive nitrosylation on water-soluble cobalt(III)-porphyrins. Author: Roncaroli F, van Eldik R. Journal: J Am Chem Soc; 2006 Jun 21; 128(24):8042-53. PubMed ID: 16771520. Abstract: The reactions of NO and/or NO2- with three water-soluble cobalt porphyrins [Co(III)(P)(H2O)2]n, where P = TPPS, TCPP, and TMPyP, were studied in detail. At pH < 3, the reaction with NO proceeds through a single reaction step. From the kinetic data and activation parameters, the [Co(III)(P)(NO)(H2O)]n complex is proposed to be the primary product of the reaction with NO. This complex reacts further with a second NO molecule through an inner-sphere electron-transfer reaction to generate the final product, [Co(III)(P)(NO-)](n-1). At pH > 3, although a single reaction step is also observed, a systematic study as a function of the NO and NO2- concentrations revealed that two reaction steps are operative. In the first, NO2- and NO compete to substitute coordinated water in [Co(III)(P)(H2O)2]n to yield [Co(III)(P)(NO)(H2O)]n and [Co(III)(P)(NO2-)(H2O)](n-1) as the primary reaction products. Only the nitrite complex could be detected and no final product formation was observed during the reaction. It is proposed that [Co(III)(P)(NO)(H2O)]n rapidly reacts with NO2- to form the nitrite complex, which in the second reaction step reacts with another NO molecule to generate the final product through an inner-sphere electron-transfer reaction. The reported results are relevant for the interaction of vitamin B(12a) with NO and NO2-.[Abstract] [Full Text] [Related] [New Search]