These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Author: Leichert LI, Jakob U.
    Journal: Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668.
    Abstract:
    Cysteines play an important role in protein biochemistry. The unique chemical property and high reactivity of the free thiol group makes reduced cysteine a versatile component of catalytic centers and metal binding sites in many cytosolic proteins and oxidized cystine a stabilizing component in many secreted proteins. Moreover, cysteines readily react with reactive oxygen and nitrogen species to form reversible oxidative thiol modifications. As a result, these reversible thiol modifications have found a use as regulatory nano-switches in an increasing number of redox sensitive proteins. These redox-regulated proteins are able to adjust their activity quickly in response to changes in their redox environment. Over the past few years, a number of techniques have been developed that give insight into the global thiol-disulfide state of proteins in the cell. They have been successfully used to find substrates of thiol-disulfide oxidoreductases and to discover novel redoxregulated proteins. This review will provide an overview of the current techniques, focus on approaches to quantitatively describe the extent of thiol modification in vivo, and summarize their applications.
    [Abstract] [Full Text] [Related] [New Search]