These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain.
    Author: Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L.
    Journal: Mol Pharmacol; 2006 Sep; 70(3):1013-21. PubMed ID: 16772521.
    Abstract:
    Numerous data showed that 5-hydroxytryptamine-1A (5-HT1A) receptors couple to Galpha(o)/alpha(i) proteins for signal transduction. However, the alpha subunit isoforms really involved in 5-HT1A receptor coupling in brain remain to be identified. Moreover, regional differences in the functional characteristics of brain 5-HT1A receptors have been evidenced repeatedly. Because such differences could be due to variations in G proteins interacting with the same receptor, relevant approaches were used for identifying alpha subunits physically coupled to 5-HT1A receptors in different regions of the rat brain. Using immunoaffinity chromatography coupled to Western blot detection, 5-HT1A receptors were found to interact equally with Galpha(o) and Galpha(i3) in the cerebral cortex, mainly with Galpha(o) and weakly with Galpha(i3) in the hippocampus and exclusively with Galpha(i3) in the anterior raphe area. In the hypothalamus, 5-HT(1A) receptors seemed to be coupled to the latter two G proteins plus Galpha(i1) and Galpha(z). Complementary experiments based on an antibody capture technique coupled to both classic radioactivity and scintillation proximity assay detections showed that hippocampal 5-HT1A receptor stimulation induced 5'-O-(3-[35S]thio)triphosphate binding to immunoprecipitates with Galpha(i3) and Galpha(o) antisera. In the anterior raphe, such 5-HT1A receptor-mediated effect was obtained with Galpha(i3) antiserum only. These results demonstrated the existence of regional differences in the coupling of 5-HT1A receptors to G proteins in the rat brain. In the anterior raphe, 5-HT1A receptors seem to interact specifically with Galpha(i3), whereas in the hippocampus, they are mainly coupled to Galpha(o) proteins. Such a disparity in G-protein coupling might explain regional differences in adaptive regulations of brain 5-HT1A receptors.
    [Abstract] [Full Text] [Related] [New Search]