These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ab initio optical rotatory dispersion and electronic circular dichroism spectra of (S)-2-chloropropionitrile.
    Author: Kowalczyk TD, Abrams ML, Crawford TD.
    Journal: J Phys Chem A; 2006 Jun 22; 110(24):7649-54. PubMed ID: 16774210.
    Abstract:
    Coupled-cluster and density-functional methods have been used to determine specific rotations and electronic circular dichroism (ECD) rotational strengths for (S)-2-chloropropionitrile. Coupled-cluster specific rotations using both the length- and velocity-gauge representations of the electric-dipole operator, computed with basis sets of triple-zeta quality containing up to 326 functions, compare very well with recently reported gas-phase cavity-ring-down polarimetry data. ECD rotational strengths for the six lowest-lying excited states are found to vary in sign, and the second excited state, which has a larger rotational strength than the first by a factor of 4, was found to yield a much larger contribution (by a factor of 10) to the overall negative specific rotation observed both experimentally and theoretically. However, both valence and Rydberg states appear to make substantial contributions to the total rotation, often of opposite sign from the converged/linear-response result. Furthermore, the sum-over-states approach was found to be inadequate for reproducing the specific rotations derived from the linear-response approach, even when 100 excited states (well beyond the estimated ionization limit) were included in the summation. Density-functional specific rotations using the B3LYP functional with basis sets of quadruple-zeta quality containing up to 588 functions are found to be too large compared to experiment by approximately a factor of 2. This error appears to be related to both the underestimation of the electronic excitation energies, as well as concomitant overestimation of the corresponding ECD rotational strengths. Although earlier studies reported good agreement between density-functional specific rotations and experiment when electric-field-dependent functions were used in conjunction with a double-zeta-quality basis set, the results reported here, which are near the basis-set limit, suggest that this agreement may be fortuitous.
    [Abstract] [Full Text] [Related] [New Search]