These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Computational studies on the ground and excited states of BrOOBr. Author: Li Y, Vo CK. Journal: J Chem Phys; 2006 May 28; 124(20):204309. PubMed ID: 16774334. Abstract: In this work, theoretical computations for the ground and excited states of BrOOBr have been performed at high-level ab initio molecular orbital theories. The ground-state geometries of BrOOBr in different forms (trans, cis, and twist form) have been optimized at the couple-cluster CCSD(T) level of theory with cc-pVTZ and aug-cc-pVTZ basis sets, which indicates that at CCSD(T)/cc-pVTZ level of theory, the twist form is 4.96 kcal/mol more stable than the trans form and 10.67 kcal/mol more stable than the cis form; at the CCSD(T)/aug-cc-pVTZ basis set the twist form is 4.33 kcal/mol more stable than the trans form and 9.54 kcal/mol more stable than the cis form. The vertical excitation energies and potential-energy curves for the singlet and triplet low-lying excited states of BrOOBr were calculated at both the complete active space self-consistent-field (CASSCF) level of theory and the multireference internally contracted configuration interaction (MRCI) level of theory. The differences of potential-energy curves at CASSCF and MRCI levels of theory are found for the BrOOBr excited states. At CASSCF level of theory, none of the BrOOBr excited states are bound. However, at MRCI level of theory, all the BrOOBr states studied in this work are bound or slightly bound at the Frank-Condon region. In addition, the scalar relativistic effect and the spin-orbital coupling effect on the vertical excitation energies of the electronic states of BrOOBr were estimated.[Abstract] [Full Text] [Related] [New Search]