These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of excitatory amino acid receptors cannot alone account for anoxia-induced impairment of protein synthesis in rat hippocampal slices.
    Author: Carter AJ, Müller RE.
    Journal: J Neurochem; 1991 Sep; 57(3):888-96. PubMed ID: 1677679.
    Abstract:
    We have investigated the contribution of excitatory amino acid receptor activation to the inhibition of protein synthesis observed after anoxia in rat hippocampal slices. Protein synthesis was assessed in normoxic medium by measuring the incorporation of [14C]lysine into perchloric acid-insoluble tissue extracts. Protein synthesis was impaired after anoxia; the extent of inhibition was dependent on the duration of anoxia and on the time allowed for postanoxic recovery. There was a similar impairment under normoxic conditions when the N-methyl-D-aspartate (NMDA) receptor channel was activated by removing Mg2+ and adding NMDA. This was prevented by noncompetitive antagonists of the NMDA receptor channel (MK-801, phencyclidine, and N-allylnormetazocine). In contrast, incubation with the NMDA antagonists failed to prevent the protein synthesis inhibition caused by anoxia, although it moderately facilitated the postanoxic recovery. Protein synthesis was also impaired under normoxic conditions after incubation with quisqualate and kainate, agonists of non-NMDA glutamate receptors. This impairment was prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, an antagonist of these receptors. Although 6-cyano-7-nitroquinoxaline-2,3-dione alone failed to prevent anoxic damage, when used in combination with an NMDA antagonist it did partially enhance the later recovery of protein synthesis. These results indicate that the activation of excitatory amino acid receptors cannot alone account for anoxia-induced impairment of protein synthesis in rat hippocampal slices.
    [Abstract] [Full Text] [Related] [New Search]