These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High volume hydrodynamic injection of plasmid DNA via the hepatic artery results in a high level of gene expression in rat hepatocellular carcinoma induced by diethylnitrosamine. Author: Tada M, Hatano E, Taura K, Nitta T, Koizumi N, Ikai I, Shimahara Y. Journal: J Gene Med; 2006 Aug; 8(8):1018-26. PubMed ID: 16779866. Abstract: BACKGROUND: Hydrodynamic injection of naked plasmid DNA (pDNA) via the tail vein is a safe and effective method of gene transfer to the liver. However, successful gene transfer has yet to be shown for hepatocellular carcinoma (HCC); therefore, we investigated the feasibility and efficacy of hydrodynamic injection via the tail vein and hepatic artery in a diethylnitrosamine (DEN)-induced HCC model in rats. METHODS: HCC was induced in Sprague-Dawley rats by 100 ppm DEN in drinking water. pCMV-SPORT-beta-galactosidase (beta-gal, 400 microg) was injected (i) via the tail vein in a volume of 0.1 ml/g in 30 s or (ii) via the hepatic artery in a volume of 5 or 10 ml at 1 ml/s, either with or without temporary occlusion of the inferior vena cava (IVC) and portal vein (PV). The liver was harvested 24 h after administration, and beta-gal expression was evaluated with X-gal staining and measurement of enzymatic activity in tissue homogenates. RESULTS: Hydrodynamic injection via the tail vein achieved transgene expression only in non-cancerous tissue (tumor: 0.16 +/- 0.04%, non-tumor: 5.07 +/- 1.66%). Hydrodynamic injection via the hepatic artery was tolerated, but failed to produce efficient transgene expression in tumor and non-tumor cells. On the other hand, concomitant use of temporary IVC/PV occlusion with hydrodynamic injection via the hepatic artery dramatically increased transgene expression in cancer cells, but tumor-selective gene transfer was not achieved with this procedure (tumor: 7.38 +/- 3.66%, non-tumor: 7.77 +/- 1.06%). CONCLUSIONS: High-volume hydrodynamic injection of a pDNA solution via the hepatic artery with IVC/PV occlusion achieved a high level of gene expression in a HCC rat model. This gene transfer technique may have potential in clinical gene therapy for HCC.[Abstract] [Full Text] [Related] [New Search]