These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Incorporation of styrene enhances recognition of ribonuclease A by molecularly imprinted polymers. Author: Hsu CY, Lin HY, Thomas JL, Wu BT, Chou TC. Journal: Biosens Bioelectron; 2006 Sep 15; 22(3):355-63. PubMed ID: 16781138. Abstract: Ribonuclease A (RNase A) is an RNA-cleaving enzyme characterized by its high conformational stability and strong catalytic activity. This enzyme is ubiquitous in living organisms and is difficult to inactivate. In polymerase chain reaction (PCR) RNase activity is removed by adding inhibitors. Molecularly imprinted polymers (MIPs) with high selectivity, high stability, low cost and facile synthesis could prove useful in extraction of target molecules, such as RNase A, from reaction mixtures. In this investigation, MIPs were synthesized from the monomers styrene and polyethyleneglycol 400 dimethacrylate (PEG400DMA) in several different ratios. Styrene as a functional monomer gave MIPs with a higher affinity for RNase A than other functional monomers tested, according to both enzyme-linked immnuosorbent assay (ELISA) and isothermal titration calorimetry (ITC). The optimum volume ratio of styrene/PEG400DMA was 20/100 at 25 degrees C, and this ratio maximized the rebinding efficiency of RNase A to MIPs. Isothermal titration calorimetry was also used, and could be useful to design the composition of molecularly imprinted polymers for various target molecules.[Abstract] [Full Text] [Related] [New Search]