These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The nociceptin receptor antagonist [Nphe1,Arg14,Lys15]nociceptin/orphanin FQ-NH2 blocks the stimulatory effects of nociceptin/orphanin FQ on the HPA axis in rats.
    Author: Leggett JD, Harbuz MS, Jessop DS, Fulford AJ.
    Journal: Neuroscience; 2006 Sep 15; 141(4):2051-7. PubMed ID: 16784820.
    Abstract:
    Nociceptin/orphanin FQ (N/OFQ) is an opioid-related peptide that stimulates corticosterone release after i.c.v. administration in non-stressed rats. We employed in situ hybridization histochemistry to investigate N/OFQ-stimulated activation of the HPA axis at the hypothalamic and pituitary level. We have demonstrated that N/OFQ-induced activation of the HPA axis is mediated via the central N/OFQ peptide receptor (NOP) using the recently described selective NOP antagonist [Nphe(1),Arg(14),Lys(15)]nociceptin/orphanin FQ-NH(2) (UFP-101). We found that, at 30 min post-i.c.v. injection, N/OFQ dose-dependently increased plasma adrenocorticotrophin hormone and corticosterone compared with the vehicle-injected controls. N/OFQ (1.0 microg) significantly increased CRF mRNA but not AVP mRNA within the parvocellular hypothalamic paraventricular nucleus compared with the control group, and significantly increased pro-opiomelanocortin (POMC) mRNA in the anterior pituitary. While UFP-101 (1.0 microg) alone had no significant effect on plasma corticosterone concentration it blocked the effect of N/OFQ (1.0 microg) on plasma corticosterone levels when compared with N/OFQ administered alone. UFP-101 also blocked the N/OFQ-induced increase in CRF mRNA and POMC mRNA. These results demonstrate that centrally administered N/OFQ activates the HPA axis via up-regulation of CRF and POMC mRNA and stimulation of corticosterone release in rats. Further, we have demonstrated for the first time that the selective NOP receptor antagonist UFP-101 blocks these effects indicating that N/OFQ-induced HPA axis activation is mediated via central NOP receptors.
    [Abstract] [Full Text] [Related] [New Search]