These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cell cycle regulated D3-type cyclins form active complexes with plant-specific B-type cyclin-dependent kinase in vitro.
    Author: Kawamura K, Murray JA, Shinmyo A, Sekine M.
    Journal: Plant Mol Biol; 2006 May; 61(1-2):311-27. PubMed ID: 16786309.
    Abstract:
    Tobacco (Nicotiana tabacum L.) cv Bright Yellow-2 (BY-2) cells are the most highly synchronizable plant cell culture, and previously we used them to analyze cell cycle regulation of cyclin-dependent kinases (CDKs) containing the cyclin binding motifs PSTAIRE (CDKA) and PPTA/TLRE (CDKB). Here we describe the analysis of tobacco CycD3 cyclins whose transcripts predominantly accumulate during G2 to M phase, which represents a unique feature of this type of cyclin D in plants. Although protein levels of CycD3s fluctuate with different patterns during the cell cycle, kinase assays revealed that the CycD3-associated kinases phosphorylate histone H1 and the tobacco retinoblastoma related protein (NtRBR1) with two peaks at the G1/S and G2/M boundaries. In vitro pull-down assays revealed that cell cycle-regulated CycD3s bind to CDKA, but more weakly than does CycD3;3, and that they also bind to CDKB and the CDK inhibitor NtKIS1a. Mutations in the cyclin box of the CycD3s showed that two amino acids are required for binding with CDKA and NtKIS1a, but no diminished interaction was observed with CDKB. A reconstituted kinase assay was adapted for use with bacterially produced GST-CycD3s, and kinase activity could be activated by incubation of extracts from exponentially growing BY-2 cells. Such activated complexes contained CDKA and CDKB, and the reconstituted GST-CycD3 mutants, retaining binding ability to CDKB, showed kinase activity, suggesting that these cell cycle-regulated CycD3s form active complexes with both A- and B-type CDKs in vitro.
    [Abstract] [Full Text] [Related] [New Search]