These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prediction of C alpha-H...O and C alpha-H...pi interactions in proteins using recurrent neural network.
    Author: Kaur H, Raghava GP.
    Journal: In Silico Biol; 2006; 6(1-2):111-25. PubMed ID: 16789918.
    Abstract:
    In this study, an attempt has been made to develop a method for predicting weak hydrogen bonding interactions, namely, C alpha-H...O and C alpha-H...pi interactions in proteins using artificial neural network. Both standard feed-forward neural network (FNN) and recurrent neural networks (RNN) have been trained and tested using five-fold cross-validation on a non-homologous dataset of 2298 protein chains where no pair of sequences has more than 25% sequence identity. It has been found that the prediction accuracy varies with the separation distance between donor and acceptor residues. The maximum sensitivity achieved with RNN for C alpha-H...O is 51.2% when donor and acceptor residues are four residues apart (i.e. at delta D-A = 4) and for C alpha-H...pi is 82.1% at delta D-A = 3. The performance of RNN is increased by 1-3% for both types of interactions when PSIPRED predicted protein secondary structure is used. Overall, RNN performs better than feed-forward networks at all separation distances between donor-acceptor pair for both types of interactions. Based on the observations, a web server CHpredict (available at http://www.imtech.res.in/raghava/chpredict/) has been developed for predicting donor and acceptor residues in C alpha-H...O and C alpha-H...pi interactions in proteins.
    [Abstract] [Full Text] [Related] [New Search]