These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intraluminal ATP concentrations in rat renal tubules.
    Author: Vekaria RM, Unwin RJ, Shirley DG.
    Journal: J Am Soc Nephrol; 2006 Jul; 17(7):1841-7. PubMed ID: 16790512.
    Abstract:
    It is becoming increasingly recognized that stimulation of apical P2 receptors can influence solute transport in the nephron, but, to date, no information is available on endogenous intraluminal nucleotide concentrations in vivo. This study measured intraluminal ATP concentrations in the renal tubules of anesthetized rats. Proximal tubular concentrations were found to be in the range of 100 to 300 nmol/L, with no significant variation along the S2 segment, whereas concentrations in the early distal tubule were markedly lower. Using collections of varying duration, the half-life of ATP in collected proximal tubular fluid was found to be 3.4 min, indicating significant breakdown by soluble nucleotidases. For assessment of whether proximal tubular ATP was filtered or secreted, experiments were performed in Munich-Wistar rats. The ATP concentration in midproximal tubules (142 +/- 23 nmol/L) was more than four-fold higher than in Bowman's space (32 +/- 7 nmol/L; P < 0.001), whereas fractional water reabsorption between the two sites was modest. In experiments that were designed to determine the effects of (patho)physiologic disturbances on intraluminal ATP, rats were either volume expanded or subjected to hypotensive hemorrhage. Neither maneuver affected proximal tubular luminal ATP concentrations significantly; rapid degradation of secreted ATP by ecto- and soluble nucleotidases is a possible explanation. It is concluded that the proximal tubule secretes ATP into the lumen, where it may have an autocrine/paracrine regulatory role.
    [Abstract] [Full Text] [Related] [New Search]