These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Redox properties of the Fe3+/Fe2+ couple in Arthromyces ramosus class II peroxidase and its cyanide adduct.
    Author: Battistuzzi G, Bellei M, De Rienzo F, Sola M.
    Journal: J Biol Inorg Chem; 2006 Jul; 11(5):586-92. PubMed ID: 16791642.
    Abstract:
    The thermodynamics of the one-electron reduction of the ferric heme in free and cyanide-bound Arthromyces ramosus peroxidase (ARP), a class II plant peroxidase, were determined through spectro-electrochemical experiments. The data were compared with those for class III horseradish peroxidase C (HRP) and its cyanide adduct, and were interpreted in terms of ligand binding features, electrostatic effects and solvent accessible surface area of the heme group and of catalytically relevant residues in the heme distal site. The E(o)' values for free and cyanide-bound ARP (-0.183 and -0.390 V, respectively, at 25 degrees C and pH 7) are higher than those for HRP and HRP-CN. ARP features an enthalpic stabilization of the ferrous state and a remarkably negative reduction entropy, which are both unprecedented for heme peroxidases. Once the compensatory contributions of solvent reorganization are partitioned from the measured reduction enthalpy, the resulting protein-based deltaH(o)'(rc(int)) value for ARP turns out to be less positive than that for HRP by +10 kJ mol(-1). The smaller stabilization of the oxidized heme in ARP most probably results from the less pronounced anionic character of the proximal histidine, and the decreased polarity in the heme distal site as compared with HRP, as indicated by the X-ray structures. The surprisingly negative deltaS(o)'(rc) value for ARP is the result of peculiar reduction-induced solvent reorganization effects.
    [Abstract] [Full Text] [Related] [New Search]