These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+ and Mg2+ binding properties of GCAP-1. Evidence that Mg2+-bound form is the physiological activator of photoreceptor guanylyl cyclase. Author: Peshenko IV, Dizhoor AM. Journal: J Biol Chem; 2006 Aug 18; 281(33):23830-41. PubMed ID: 16793776. Abstract: Guanylyl cyclase-activating protein 1 (GCAP-1) is an EF-hand protein that activates retinal guanylyl cyclase (RetGC) in photoreceptors at low free Ca2+ in the light and inhibits it in the dark when Ca2+ concentrations rise. We present the first direct evidence that Mg2+-bound form of GCAP-1, not its cation-free form, is the true activator of RetGC-1 under physiological conditions. Of four EF-hand structures in GCAP-1, three bound Ca2+ ions and could exchange Ca2+ for Mg2+. At concentrations of free Ca2+ and Mg2+ typical for the light-adapted photoreceptors, all three metal-binding EF-hands were predominantly occupied by Mg2, and the presence of bound Mg2+ in GCAP-1 was essential for its ability to stimulate RetGC-1. In the Mg2+-bound form of GCAP-1 all three Trp residues became more exposed to the polar environment compared with its apo form. The replacement of Mg2+ by Ca2+ in the EF-hands 2 and 3 further exposed Trp-21 to the solution in a non-metal-binding EF-hand domain 1 that interacts with RetGC. Contrary to that, replacement of Mg2+ by Ca2+ in the EF-hand 4 moved Trp-94 in the entering alpha-helix of the EF-hand 3 back to the non-polar environment. Our results demonstrate that Mg2+ regulates GCAP-1 not only by adjusting its Ca2+ sensitivity to the physiological conditions in photoreceptors but also by creating the conformation required for RetGC stimulation.[Abstract] [Full Text] [Related] [New Search]