These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Disappearance of bradykinin in the renal circulation of dogs. Effects of kininase inhibition. Author: Nasjletti A, Colina-Chourio J, McGiff JC. Journal: Circ Res; 1975 Jul; 37(1):59-65. PubMed ID: 167999. Abstract: In chloralose-anesthetized dogs, we investigated the disappearance of bradykinin on passage across the renal circulation. The peptide was infused into a renal artery at various doses (5-200 ng/kg min-1); renal blood flow and the concentration of kinins in renal venous blood were then determined and the percent survival of bradykinin on passage through the kidney calculated. Bradykinin caused a dose-related increase in renal blood flow, urine flow, sodium excretion, and kinin content of renal venous blood. Intravenous administration of BPP9alpha (300 mug/kg), a peptide kininase II inhibitor, potentiated the renal vasodilator, diuretic, and natriuretic actions of bradykinin and augmented the survival of the kinin on passage through the kidney from 12.72 +/- 1.64% in control dogs to 53.92 +/- 7.48% (P less than 0.001). Furthermore, the values of peptide survival were positively correlated with the increases in renal blood flow (r = 0.92, P less than 0.01), urine flow (r = 0.75, P less than 0.01), and sodium excretion (r = 0.68, P less than 0.01) produced by bradykinin. In addition, BPP9alpha by itself increased renal blood flow (16%, P less than 0.01), urine flow (115%, P less than 0.005), and sodium excretion (167%, P less than 0.02). Similarly, the concentration of kinin in renal venous blood and the excretion of urinary kinins rose from 0.11 +/- 0.03 ng/ml and 4.1 +/- 1.1 ng/min to 0.24 +/- 0.05 ng/ml (P less than 0.005) and 38.5 +/- 12.2 ng/min (P less than 0.02). These studies suggest that kinins generated intrarenally play a role in the regulation of renal blood flow and salt-water excretion and that variations in the capacity of the kidney to inactivate kinins may be a determinant of the intrarenal activity of the kallikrein-kinin system.[Abstract] [Full Text] [Related] [New Search]