These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Solvothermal synthesis and photoluminescent properties of ZnS/cyclohexylamine: inorganic-organic hybrid semiconductor nanowires. Author: Fan L, Song H, Zhao H, Pan G, Yu H, Bai X, Li S, Lei Y, Dai Q, Qin R, Wang T, Dong B, Zheng Z, Ren X. Journal: J Phys Chem B; 2006 Jul 06; 110(26):12948-53. PubMed ID: 16805597. Abstract: An inorganic-organic hybrid semiconductor, ZnS/CHA (CHA = cyclohexylamine) nanocomposites was successfully synthesized via a solvothermal method using CHA as solvent, which yielded uniform and ultralong nanowires with widths of 100-1000 nm and lengths of 5-20 microm. Changing the reaction conditions could alter the morphology and optical properties of the nanocomposites. The periodic layer subnanometer structures were identified by high-resolution transmission electron microscopy (HR-TEM) images, with thickness of approximately 2 nm. The composites exhibited a very large blue-shift in their optical absorption edge as well as an exciton excitation band due to a strong quantum confinement effect caused by the internal subnanometer-scale structures. The pure hexagonal wurtzite ZnS nanowires were also obtained by extracting the ZnS/CHA nanocomposites with dimethyl formamide (DMF). In addition, the luminescent properties of exciton and defect-related transitions in different samples of ZnS/CHA were discussed in detail.[Abstract] [Full Text] [Related] [New Search]