These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Suppression in murine experimental autoimmune thyroiditis: in vivo inhibition of CD4+ T cell-mediated resistance by a nondepleting rat CD4 monoclonal antibody. Author: Nabozny GH, Cobbold SP, Waldmann H, Kong YC. Journal: Cell Immunol; 1991 Nov; 138(1):185-96. PubMed ID: 1680568. Abstract: Genetically susceptible mice become resistant to experimental autoimmune thyroiditis (EAT) induction with mouse thyroglobulin (MTg) and lipopolysaccharide after pretreatment with deaggregated MTg (dMTg). Recent work showed this suppression to be mediated by CD4+ suppressor T cells (Ts). To study Ts action in vivo, we used a rat IgG2a monoclonal antibody (mAb), YTS 177.9, which modulates CD4 antigen in vivo without depleting CD4+ cells. Initial studies showed that after two 1-mg doses of mAb 7 days apart, extensive CD4 antigen modulation of peripheral blood leukocytes occurred within 4 days. Mice given CD4 mAb 24 hr before dMTg (2 doses, 7 days apart) were resistant to EAT induction when immunized with MTg and LPS 20 days later. Also, anti-rat IgG2a titers were reduced following challenge with heat-aggregated rat IgG2a compared to controls. Subsequent analysis of serum in CD4 mAb-treated animals revealed that mAb was present in the circulation for 14 days. Moreover, mice given CD4 mAb and dMTg, then challenged after only 10 days, when CD4 mAb was still circulating, developed a significantly higher incidence of thyroid damage than controls. These findings suggest that modulation of CD4 antigen does not interfere with Ts activation, but the presence of CD4 mAb, at the time of autoantigenic challenge, can interfere with tolerance to EAT induction. Thus, the direct relationship between the presence of CD4 mAb and inhibition of EAT suppression implicates a role for CD4 molecules in the mediation of suppression.[Abstract] [Full Text] [Related] [New Search]