These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An endothelial-cell-enriched primary culture system to study vascular endothelial growth factor (VEGF A) expression in a teleost, the Japanese eel (Anguilla japonica). Author: Huang YS, Huang WL, Lin WF, Chen MC, Jeng SR. Journal: Comp Biochem Physiol A Mol Integr Physiol; 2006 Sep; 145(1):33-46. PubMed ID: 16807025. Abstract: A partial gene for eel (Anguilla japonica) vascular endothelial growth factor (VEGF) has been cloned and an endothelial-cell-enriched primary culture derived from rete mirabile established to study regulation of the expression of the eel VEGF gene. Cells were cultured in M199 medium containing 0.1% fetal calf serum (FCS) and serum-free M199 medium for long-and short-term experiments, respectively. Cells were separately treated with cobalt ions (Co2+), basic fibroblast growth factor (bFGF), and estradiol (E2), which have been demonstrated to stimulate mammalian VEGF A expression, followed by quantification of the VEGF mRNA levels by real-time reverse transcription polymerase chain reaction. Our results show that: (1) the deduced eel VEGF protein encoded by the cloned gene is about 130 amino acids in length, and is closely related to a zebrafish (Danio rerio) VEGF A; (2) the endothelial-cell-enriched rete mirabile primary culture containing mainly (over 70%) the capillary endothelial cells; (3) the expression levels of the eel VEGF transcript were increased by Co2+, bFGF, and E2 treatments in a dose-and time-dependent manner. Our data demonstrate that an eel partial VEGF gene has been cloned and its regulation of expression in endothelial-cell-enriched rete mirabile cell culture is similar to that in higher vertebrates.[Abstract] [Full Text] [Related] [New Search]