These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of the crystal structures and magnetic properties of the low- and high-temperature forms of AgCuPO4: crystal structure determination, magnetic susceptibility measurements, and spin dimer analysis.
    Author: Ben Yahia H, Gaudin E, Darriet J, Dai D, Whangbo MH.
    Journal: Inorg Chem; 2006 Jul 10; 45(14):5501-9. PubMed ID: 16813413.
    Abstract:
    The crystal structure of the low-temperature form of AgCuPO4 (i.e., alpha-AgCuPO4) was determined by powder X-ray diffraction and was compared with that of the high-temperature form of AgCuPO4 (i.e., beta-AgCuPO4). The magnetic properties of the two forms were examined by measuring their magnetic susceptibilities and evaluating the relative strengths of their spin-exchange interactions on the basis of spin-dimer analysis. Both forms of AgCuPO4 have layers of Cu2P2O8 alternating with silver-atom double layers; beta-AgCuPO4 has two Cu2P2O8 layers per unit cell, while alpha-AgCuPO4 has one. The coordinate environment of each Cu2+ ion is close to being a distorted square pyramid in alpha-AgCuPO4, but it is close to being a distorted trigonal bipyramid in beta-AgCuPO4. The magnetic susceptibilities of alpha- and beta-AgCuPO4 are well simulated by an antiferromagnetic alternating-chain model, which leads to J/k(B) = -146.1 K and alphaJ/k(B) = -75.8 K for alpha-AgCuPO4, and J/k(B) = -82.6 K and alphaJ/k(B) = -31.7 K for beta-AgCuPO4 (with the convention in which the spin-exchange parameter between two adjacent spin sites is written as 2J). The spin gaps, delta/k(B), obtained from these parameters are 93.7 K for alpha-AgCuPO4 and 62.3 K for beta-AgCuPO4. The strongest spin exchange in both forms of AgCuPO4 comes from a super-superexchange path, and this interaction is stronger for alpha-AgCuPO4 than for beta-AgCuPO4 by a factor of approximately 2, in good agreement with the experiment. Our analysis supports the use of this model for beta-AgCuPO4 and indicates that the spin lattice of alpha-AgCuPO4 would be better described by a two-dimensional net made up of weakly interacting alternating chains.
    [Abstract] [Full Text] [Related] [New Search]