These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contribution of peroxidized cardiolipin to inactivation of bovine heart cytochrome c oxidase.
    Author: Musatov A.
    Journal: Free Radic Biol Med; 2006 Jul 15; 41(2):238-46. PubMed ID: 16814104.
    Abstract:
    The lipid-soluble peroxides, tert-butyl hydroperoxide and peroxidized cardiolipin, each react with bovine cytochrome c oxidase and cause a loss of electron-transport activity. Coinciding with loss of activity is oxidation of Trp19 and Trp48 within subunits VIIc and IV, and partial dissociation of subunits VIa and VIIa. tert-Butyl hydroperoxide initiates these structural and functional changes of cytochrome c oxidase by three mechanisms: (1) radical generation at the binuclear center; (2) direct oxidation of Trp19 and Trp48; and (3) peroxidation of bound cardiolipin. All three mechanisms contribute to inactivation since blocking a single mechanism only partially prevents oxidative damage. The first mechanism is similar to that described for hydrogen peroxide [Biochemistry43:1003-1009; 2004], while the second and third mechanism are unique to organic hydroperoxides. Peroxidized cardiolipin inactivates cytochrome c oxidase in the absence of tert-butyl hydroperoxide and oxidizes the same tryptophans within the nuclear-encoded subunits. Peroxidized cardiolipin also inactivates cardiolipin-free cytochrome c oxidase rather than restoring full activity. Cardiolipin-free cytochrome c oxidase, although it does not contain cardiolipin, is still inactivated by tert-butyl hydroperoxide, indicating that the other oxidation products contribute to the inactivation of cytochrome c oxidase. We conclude that both peroxidized cardiolipin and tert-butyl hydroperoxide react with and triggers a cascade of structural alterations within cytochrome c oxidase. The summation of these events leads to cytochrome c oxidase inactivation.
    [Abstract] [Full Text] [Related] [New Search]