These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Montelukast regulates eosinophil protease activity through a leukotriene-independent mechanism.
    Author: Langlois A, Ferland C, Tremblay GM, Laviolette M.
    Journal: J Allergy Clin Immunol; 2006 Jul; 118(1):113-9. PubMed ID: 16815146.
    Abstract:
    BACKGROUND: Migration of eosinophils into bronchial mucosa requires proteolysis. Montelukast, a cysteinyl leukotriene (CysLT) 1 receptor antagonist used in asthma treatment, decreases eosinophil infiltration into the asthmatic airways, suggesting that CysLTs modulate eosinophil protease activity. OBJECTIVE: We sought to determine whether CysLTs and montelukast regulate eosinophil protease activity. METHODS: Purified blood eosinophils were treated with or without montelukast; MK-0591, a 5-lipoxygenase-activating protein inhibitor; or leukotriene (LT) D(4). Migration assays through Matrigel were performed in the presence of 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a potent eosinophil chemotactic factor, or LTD(4). Expression of molecules implicated in plasmin generation and matrix metalloproteinase (MMP) 9 release were also evaluated. RESULTS: Montelukast and MK-0591 decreased eosinophil migration promoted by 5-oxo-ETE, whereas LTD(4) failed to induce eosinophil migration. However, LTD(4) significantly boosted the migration rate obtained with a suboptimal concentration of 5-oxo-ETE and partially reversed the inhibition obtained with MK-0591. Montelukast significantly reduced the maximal rate of activation of plasminogen into plasmin by eosinophils obtained with 5-oxo-ETE. 5-Oxo-ETE increased the number of eosinophils expressing urokinase plasminogen activator receptor and stimulated secretion of MMP-9. Montelukast, but neither MK-0591 nor LTD(4), reduced the expression of urokinase plasminogen activator receptor and the secretion of MMP-9 and increased total cellular activity of urokinase plasminogen activator and the expression of plasminogen activator inhibitor 2 mRNA. CONCLUSION: Montelukast inhibits eosinophil protease activity in vitro through a mechanism that might be independent of its antagonist effect on CysLT 1 receptor. CLINICAL IMPLICATIONS: This could partially explain montelukast's anti-inflammatory effect in asthma and eventually amplify to improve its therapeutic efficacy.
    [Abstract] [Full Text] [Related] [New Search]