These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Author: Toulany M, Kasten-Pisula U, Brammer I, Wang S, Chen J, Dittmann K, Baumann M, Dikomey E, Rodemann HP. Journal: Clin Cancer Res; 2006 Jul 01; 12(13):4119-26. PubMed ID: 16818713. Abstract: PURPOSE: It is known that blockage of epidermal growth factor receptor (EGFR)/phosphatidylinositol 3-kinase (PI3K) activity enhances radiation sensitivity of human tumor cells presenting a K-RAS mutation. In the present study, we investigated whether impaired repair of DNA double-strand breaks (DSB) is responsible for the radiosensitizing effect of EGFR and PI3K inhibition in K-RAS mutated (K-RAS(mt)) cells. EXPERIMENTAL DESIGN: The effect of the EGFR tyrosine kinase inhibitor BIBX1382BS (BIBX) on cellular radiosensitivity was determined in K-RAS(mt) (A549) and K-RAS(wt) (FaDu) cell lines by clonogenic survival assay. Radiation-induced phosphorylation of H2AX (Ser139), ATM (Ser1981), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs; Thr2609) was analyzed by immunoblotting. Twenty-four hours after irradiation, residual DSBs were quantified by identification of gammaH2AX foci and frequency of micronuclei. RESULTS: BIBX reduced clonogenic survival of K-RAS(mt)-A549 cells, but not of K-RAS(wt)-FaDu cells, after single-dose irradiation. Analysis of the radiation-induced H2AX phosphorylation revealed that BIBX, as well as the PI3K inhibitor LY294002, leads to a marked reduction of P-H2AX in K-RAS(mt)-A549 and MDA-MB-231 cells, but not in K-RAS(wt)-FaDu and HH4ded cells. Likewise, radiation-induced autophosphorylation of DNA-PKcs at Thr2609 was only blocked in A549 cells by these two inhibitors and AKT1 small interfering RNA transfection. However, neither in K-RAS(mt) nor in K-RAS(wt) cells the inhibitors did affect radiation-induced ATM phosphorylation. As a consequence of inhibitor treatment, a significant enhancement of both residual DSBs and frequency of micronuclei was apparent only in A549 but not in FaDu cells following radiation. CONCLUSION: Targeting of the EGFR-dependent PI3K-AKT pathway in K-RAS-mutated A549 cells significantly affects postradiation survival by affecting the activation of DNA-PKcs, resulting in a decreased DSB repair capacity.[Abstract] [Full Text] [Related] [New Search]