These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Serotonin via presynaptic 5-HT1 receptors attenuates synaptic transmission to immature rat motoneurons in vitro.
    Author: Wu SY, Wang MY, Dun NJ.
    Journal: Brain Res; 1991 Jul 19; 554(1-2):111-21. PubMed ID: 1681986.
    Abstract:
    Intracellular recordings were made from motoneurons in transverse spinal cord slices from immature (12-20 day) rats and the effects of 5-HT on dorsal root evoked excitatory (EPSPs) and inhibitory (IPSPs) postsynaptic potentials were assessed. With or without causing a membrane polarization, 5-HT (1-300 microM) depressed synaptic responses; the IC50 was 6 microM. The inhibitory effect was potentiated by the uptake inhibitor fluoxetine. The 5-HT1A/1B agonists 5-CT and 8-OH-DPAT and the 5-HT1B/1C agonist TFMPP reduced the synaptic responses as well, with an IC50 of 0.26, 2.2 and 0.28 microM, respectively. The synaptic depressant effect was not antagonized by methysergide (0.1-1 microM), ketanserin (1-5 microM) and MDL 72222 (1-10 microM). Methysergide alone diminished the synaptic responses in some of the motoneurons. Spiperone (1-10 microM) partially and fully antagonized the depressant effect of 5-HT and 8-OH-DPAT, but was ineffective against 5-CT and TFMPP. The 5-HT-induced synaptic depression was not accompanied by a concomitant reduction of glutamate-induced depolarizations; the latter were enhanced after repeated exposure to 5-HT in some motoneurons. Finally, 5-HT reduced the afterhyperpolarization following a single spike or a train of spikes. The results indicate that 5-HT inhibits synaptic responses in motoneurons via presynaptic 5-HT1 receptors, the activation of which reduces the liberation of excitatory and inhibitory transmitters from respective nerve endings.
    [Abstract] [Full Text] [Related] [New Search]