These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Maternal ethanol consumption during pregnancy enhances bile acid-induced oxidative stress and apoptosis in fetal rat liver. Author: Perez MJ, Velasco E, Monte MJ, Gonzalez-Buitrago JM, Marin JJ. Journal: Toxicology; 2006 Aug 15; 225(2-3):183-94. PubMed ID: 16824660. Abstract: Ethanol is able to cross the placenta, which may cause teratogenicity. Here we investigated whether ethanol consumption during pregnancy (ECDP), even at doses unable to cause malformation, might increase the susceptibility of fetal rat liver to oxidative insults. Since cholestasis is a common condition in alcoholic liver disease and pregnancy, exposure to glycochenodeoxycholic acid (GCDCA) has been used here as the oxidative insult. The mothers received drinking water without or with ethanol from 4 weeks before mating until term, when placenta, maternal liver, and fetal liver were used. Ethanol induced a decreased GSH/GSSG ratio in these organs, together with enhanced gamma-glutamylcysteine synthetase and glutathione reductase activities in both placenta and fetal liver. Lipid peroxidation in placenta and fetal liver was enhanced by ethanol, although it had no effect on caspase-3 activity. Although the basal production of reactive oxygen species (ROS) was higher by fetal (FHs) than by maternal (AHs) hepatocytes in short-term cultures, the production of ROS in response to the presence of varying GCDCA concentrations was higher in AHs and was further increased by ECDP, which was associated to a more marked impairment in mitochondrial function. Moreover, GCDCA-induced apoptosis was increased by ECDP, as revealed by enhanced Bax-alpha/Bcl-2 ratio (both in AHs and FHs) and the activity of caspase-8 (only in AHs) and caspase-3. In sum, our results indicate that although AHs are more prone than FHs to producing ROS, at doses unable to cause maternal liver damage ethanol consumption causes oxidative stress and apoptosis in fetal liver.[Abstract] [Full Text] [Related] [New Search]