These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering.
    Author: Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG.
    Journal: Biomacromolecules; 2006 Jul; 7(7):2237-42. PubMed ID: 16827593.
    Abstract:
    We have investigated the dispersion of single-walled carbon nanotubes (SWNTs) and functionalized SWNTs (F-SWNTs) in the unsaturated, biodegradable polymer poly(propylene fumarate) (PPF) and examined the rheological properties of un-cross-linked nanocomposite formulations as well as the electrical and mechanical properties of cross-linked nanocomposites. F-SWNTs were produced from individual SWNTs by a diazonium-based method and dispersed better than unmodified SWNTs in both un-cross-linked and cross-linked PPF matrix. Cross-linked nanocomposites with F-SWNTs were superior to those with unmodified SWNTs in terms of their mechanical properties. Specifically, nanocomposites with 0.1 wt % F-SWNTs loading resulted in a 3-fold increase in both compressive modulus and flexural modulus and a 2-fold increase in both compressive offset yield strength and flexural strength when compared to pure PPF networks, whereas the use of 0.1 wt % SWNTs gained less than 37% mechanical reinforcement. These extraordinary mechanical enhancements considered together with Raman scattering and sol fraction measurements indicate strong SWNT-PPF interactions and increased cross-linking densities resulting in effective load transfer. With enhanced mechanical properties and capabilities of in situ injection and cross-linking, these SWNT/polymer nanocomposites hold significant implications for the fabrication of bone tissue engineering scaffolds.
    [Abstract] [Full Text] [Related] [New Search]