These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Release of segmental amino acid neurotransmitters in response to peripheral afferent and motor cortex stimulation: a pilot study. Author: Simpson RK, Robertson CS, Goodman JC. Journal: Life Sci; 1991; 49(17):PL113-8. PubMed ID: 1682779. Abstract: The role of amino acid (AA) neurotransmitters in the spinal cord has been primarily studied using in vitro preparations and histochemical methods. The technology necessary to estimate AA levels in an intact animal has only recently become available. Such an investigation could yield valuable information regarding the segmental neurochemical environment. We measured the release of AAs into the rabbit lumbar spinal cord in response to sciatic nerve and transcranial stimulation with stereotaxically placed microdialysis catheters. Samples were obtained periodically during 90 minutes of continuous stimulation of either the left or right sciatic nerve, or motor cortex. Quantification of gamma-amino butyric acid (GABA), aspartate, glutamate, glycine, and taurine was performed using high pressure liquid chromatography (HPLC). Adequate neural excitation was verified by recording somatosensory evoked potentials (SSEPs) or corticomotor evoked potentials (CMEPs). Sensory activation at intensities sufficient to activate small and large diameter peripheral fibers of the ipsilateral (to the microdialysis probe) sciatic nerve produced a significant change only in segmental glycine levels. Contralateral sciatic nerve stimulation failed to evoke a significant elevation of AAs. In addition, a significant increase in the release of glycine and taurine was measured after 90 minutes of transcranial stimulation. SSEP and CMEP components repeatedly showed adequate activation of primary afferent, descending motor fiber pathways, and segmental interneuron pools during dialysis sampling. Our data are consistent with the hypothesis that suprasegmental influence over peripheral afferent and motor activity may be, in part, through these amino acid neurotransmitters in the rabbit lumbar spinal cord.[Abstract] [Full Text] [Related] [New Search]